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Abstract—We have developed a highly efficient and scalable
cardiac electrophysiology simulation capability that supports
groundbreaking resolution and detail to elucidate the mecha-
nisms of sudden cardiac death from arrhythmia. We can simulate
thousands of heartbeats at a resolution of 0.1 mm, comparable
to the size of cardiac cells, thereby enabling scientific inquiry not
previously possible. Based on scaling results from the partially
deployed Sequoia IBM Blue Gene/Q machine at Lawrence
Livermore National Laboratory and planned optimizations, we
estimate that by SC12 we will simulate 8–10 heartbeats per
minute — a time-to-solution 400–500 times faster than the state-
of-the-art. Performance between 8 and 11 PFlop/s on the full
1,572,864 cores is anticipated, representing 40–55 percent of peak.
The power of the model is demonstrated by illuminating the
subtle arrhythmogenic mechanisms of anti-arrhythmic drugs that
paradoxically increase arrhythmias in some patient populations.

I. INTRODUCTION

Sudden cardiac death (SCD) from cardiac arrest is the most
common cause of death worldwide, accounting for over 50
percent of all deaths from cardiovascular disease and 250,000
to 300,000 deaths annually in the United States [1]. While
much controversy exists, SCD is generally accepted to result
from arrhythmias, predominately ventricular fibrillation, and
hence can be considered an electrical dysfunction of the
heart. During a normal heartbeat, Purkinje fibers, a specialized
impulse conduction system, trigger the heart ventricles to con-
tract in a uniform and orderly fashion. Each triggering event
produces activation (termed depolarization) of the ventricular
heart cells, followed by a recovery (termed repolarization)
with a delay of approximately 300–500 ms. In contrast, an
arrhythmia is thought to arise from a reentrant activation that
follows an abnormal circular path and produces a continuous
and self-regenerating cycle of activation.

Despite more than 50 years of intense research, the exact
underlying mechanisms of arrhythmogenesis remain elusive.
Many factors are known to predispose one to SCD, but no
one has been able to define precisely the sequence of events
that precipitate the fatal arrhythmia that some have termed
the electrical accident [2]. Current experimental techniques

cannot resolve initiation events at the cellular level, and in
situ measurements in an active beating heart will remain a
challenge in the foreseeable future. For this reason, we believe
that detailed cardiac simulations have the greatest potential
to illuminate the details of the formation and persistence
of reentrant activation patterns. Understanding gained from
high fidelity simulations will help to better apply existing
therapies and spur the development of new therapies with
greater efficacy and fewer deleterious effects.

Detailed cardiac models include biophysically accurate rep-
resentation of cells, the assembly of cells into anatomically
accurate organ-level structures, and models of the cell-to-cell
electrical coupling including preferred electrical conduction
along the complex muscle fiber structure of the heart. Previous
cardiac simulation implementations are limited in biophysical
detail of the cellular models, size of the model structure (e.g.,
rabbit vs. human heart), spatial resolution, and practical length
of simulation time. Published scientific studies typically cite
spatial resolutions of 0.2–0.3 mm and 20–32 million active
elements [3]–[6] and simulation times of at most tens of
heartbeats.

To address these limitations, we have developed Cardioid,
a high-performance cardiac simulation tool with detailed cell
representations and support for heart geometries with near-
cellular spatial resolution based on full-size human ventricle
anatomy [7]. We use Cardioid to simulate the application
of a class III anti-arrhythmic drug, which can unexpectedly
increase arrhythmias in some patients [8]. This study, which
includes application and clearance of the drug and the sporadic
arrhythmia events that occur in certain circumstances [9],
requires both 0.1 mm resolution and simulation of up to 5,000
heartbeats, a task beyond the capability of other codes.

To meet the extraordinary computational demands of such a
study, Cardioid has been highly optimized for execution on the
Sequoia IBM Blue Gene R©/Q (BG/Q) machine at Lawrence
Livermore National Laboratory (LLNL). We predict a factor
of 400–500 throughput improvement over the state-of-the-
art, based on results of [10], [4] and [11] projected to our



Fig. 1. Top view of ventricles looking down on the chambers. The inset
shows details of the fine structures of the endocardium surface, including
papillary muscles. The illustrated cardiac cells that are in red (not to scale)
show the fiber direction.

planned simulations. Through use of low-level communication
protocols, we attain near-perfect weak scaling. With judicious
use of cache and registers, minimization of memory accesses,
utilization of hardware threading, hardware assisted barriers
for intranode synchronization, and exploitation of the SIMD
instruction set, we are able to attain 43% of peak performance
per computational node despite having only 1600 floating
point operations per grid cell per iteration. This translates to
over 4.3 Pflop/s on half the machine (already demonstrated)
and over 8.6 Pflop/s projected on the full 1,572,864 core
system (based on the demonstrated near-perfect weak scaling).
This represents a speedup of a factor of 50 with respect to
the unoptimized code. With further optimization we hope to
exceed 10 Pflop/s on the full Sequoia.

The computational model is described in section II. In sec-
tion III we describe the LLNL BG/Q system. The optimization
strategy is discussed in section IV. Performance and scalability
are discussed in section V. We discuss scientific capability
and results in section VI. The conclusions are presented in
section VII.

II. COMPUTATIONAL MODEL

The electrophysiology of human heart ventricles is simu-
lated as the ensemble behavior of individual cells that are
physically and electrically connected (see Figure 1). Cells
become electrically active because charged ionic species pass
in and out of them through specialized protein structures
called ionic channels. On every heartbeat, each cell activates
and deactivates with a spike in the electrical potential of the
cell membrane called an action potential (AP, see example
in Figure 6). The AP’s are transmitted from cell to cell via
specialized gap junctions that pass ionic currents, and the cells
are arranged into fibers with increased conduction in the axial
direction.

To model this behavior there are two primary approaches.
The first, more accurate method, is the bidomain model where
the intra- and extra-cellular regions of the heart are modeled by
coupled non-linear reaction-diffusion equations. The second
method, called the monodomian model, is a simplification of
the bidomain model using the assumption that the conductiv-
ities in the intra- and extra-cellular regions are proportional
to each other. We employ the monodomain approximation
which is very commonly used in the field because the results
are sufficiently accurate without the additional cost of the
bidomain method [12].

In the monodomain model the time evolution of the electri-
cal potential of the cell membrane (Vm) is given by

Cm
∂Vm
∂t

=
1

β
∇ · (D∇(Vm))− Iion + Istim (1)

with a zero-flux condition imposed at the heart tissue bound-
ary. Cm is the membrane capacitance, β is the surface to
volume ratio, and Istim is the external stimulus current. The
conductivity D is a spatially varying anisotropic tensor and
is determined by the fiber structure of the heart. Iion is the
sum of all ion currents, and a variety of models for these
currents have been proposed. Such models are called tissue
models or reaction models and define the state of a heart
cell in terms of values of ionic species concentrations and
gate variables, where a gate expresses the probability that
a particular ion channel is open. The evolution of the state
variables (concentrations and gates) is expressed as a set of
coupled nonlinear ODE’s. The ionic currents for a given cell
are independent of those of the other cells. The coupling
between cells arises through the diffusion term of equation (1).

In 2006 ten Tusscher, et al. [13] developed a reaction
model (hereafter referred to as TT06) in which the state
of a cell is defined by 5 ion concentrations and 13 gates.
The TT06 model simulates three types of cells: epicardial
(epi), M and endocardial (endo) cells. Epi and endo cells are
located respectively near the outside and inside walls of the
heart. M cells, generally thought to be located in the mid-
myocardium, are characterized by their unique repolarization
properties. We have modified the TT06 model to add a late
sodium current with an associated gate to better reproduce
the observed variation of action potential duration (APD) in
various cell types (see section VI). We refer to this enhanced
model as TT06e.

The ODE’s in TT06e can be divided into two classes. The
time derivative for 12 of the 14 gate variables can be expressed
simply as

dgβ
dt

= (µβ(Vm)− gβ)τ−1β (Vm) (2)

Notice that the evolution of each gate depends only on the
value of the gate variable gβ and the membrane voltage, Vm.
This observation is exploited in the optimization and discussed
in section IV. The time derivative of the remaining degrees of
freedom is expressed in the general form.

dg∗α
dt

= F ({g∗α}, {gβ})



where F is a nonlinear function. For simplicity we refer to
the first set of equations as gate equations and the remainder
as non-gates.

We define a 3D Cartesian grid in which each grid cell con-
tains either heart muscle tissue or does not. Our computational
domain is defined as the union of all the tissue grid cells.

We discretize the diffusion term using a finite-volume
approach, in which we replace the divergence operator with
a surface integral over the six faces of each cell. Since
the conductivity tensor D is a general anisotropic tensor,
calculating the flux through each cell surface requires the
evaluation of all three components of ∇Vm. The gradient is
calculated using a simple finite difference algorithm (a 19-
point stencil operator) on the values of Vm in the cells nearest
to the surface considered. Setting the flux to zero through grid
cell surfaces located at the boundary of the computational
domain enforces the boundary conditions. If some of those
neighboring cells are outside the computational domain, the
finite difference schemes are modified to use only available
values of Vm inside the computational domain, resulting in
a stencil operator with weights dependent upon cell location.
In practice, those weights are precomputed at the beginning
of a run and stored for each cell. The time-integration is
accomplished with a forward Euler scheme except for the so-
called m-gate. For this gate τ can become quite small and
an exponential integration suggested by Rush and Larsen [14]
allows a much larger time step than forward Euler.

Our parallelization strategy consists of a hybrid approach
where we make use of message passing and threading. We
first partition the domain into a collection of subdomains,
where each subdomain comprises a contiguous collection
of cells. Subdomains are assigned to compute nodes in a
one-to-one fashion. Due to the high overhead of MPI, our
message passing is performed using lower-level primitives.
The threading strategy is described in detail in section IV.

Load balance is accomplished at runtime using either of
two approaches. The first approach is based on the method
of Koradi, et al. [15], in which the domain is partitioned into
a collection of Voronoi cells and balance achieved through
minimizing a cost function. The second approach involves a
weighted partitioning onto a three dimensional process grid,
followed by a diffusive rebalancing between neighbors to
equalize the number of cells per task. Each method has its
strengths and is undergoing continued improvement; it is not
yet clear if one is superior to the other.

III. TARGET ARCHITECTURE

Sequoia, located at Lawrence Livermore National Labora-
tory, is the first and largest installation of the BG/Q archi-
tecture. When fully operational in June 2012, it will employ
98304 nodes and nearly 1.6 million processor cores to achieve
a peak performance of roughly 20 PFlop/s. On a per-node
basis, BG/Q will out-perform its predecessors Blue Gene/L
and Blue Gene/P by a factor of 36 and 15, respectively.

Each BG/Q node is based on a system-on-a-chip processor
fabricated with 45 nm technology [16]. By integrating pro-

cessors, memory subsystem, and chip-to-chip communication
subsystems on a single chip, the compute node achieves
both outstanding power efficiency and reliability. Reliability
is further enhanced by deploying state-of-the-art soft-error
mitigation and error correction techniques throughout the
design. Functionally, the chip contains 16 compute cores and
1 supplemental core to handle operating system tasks. Each
core supports four-way simultaneous multithreading (SMT)
and two-way concurrent instruction issue: one integer, branch,
or load/store instruction and one floating-point instruction
per clock cycle. Within a thread, dispatch, execution, and
completion are in order. Four threads per core are sufficient to
fully utilize the execution pipelines, prevent memory latency
from adversely affecting performance, and avoid the necessity
of out-of-order execution. Each core contains a quad SIMD
double precision floating point unit (FPU) capable of 8 floating
point operations (fused multiply add) per cycle. The 16 user
processor cores at 1.6 GHz gives a BG/Q node a peak
performance of 204.8 GFlop/s. Each processor core has a
16+16 kByte L1 instruction and data cache with a sophis-
ticated pre-fetch. The processors share a central 32 MByte
L2 cache with 563 GByte/s bisection bandwidth. The node
main memory is 16 GByte of directly attached SDRAM-DDR3
providing 42.7GB/s total bandwidth.

The BG/Q L2 cache provides hardware support for trans-
actional memory and speculative execution. These techniques
facilitate execution of threaded code with potential data con-
flicts and dependencies, by allowing threads to run specula-
tively in parallel, while detecting and managing conflicts and
dependencies as they occur. The L2 cache also supports atomic
operations, which we use for thread synchronization. For
operations such as locking and barriers, and for work-queue
management, these atomic operations have much less latency
than software implementations that use the traditional load-
linked/store conditional or compare-and-swap mechanisms,
especially for a large number of threads. Haring, et al. [16]
gives an example of a 30x reduction in latency for 64 threads
to obtain a ticket lock (where each thread obtains a unique
number) using the atomic LoadIncrement instruction.

An integrated five-dimensional torus serves as the principal
node-to-node communication network and also handles collec-
tives and fast interrupts. Compared to the 3D torus architecture
of its predecessor machines, the 5D torus in BG/Q markedly
decreases the number of hops required to reach the farthest
node in the machine from any given node, and thereby both
increases the bandwidth and reduces the latency of node-
to-node communication. The 5-D nearest neighbor exchange
bandwidth is roughly 1.75 GByte/s per link with a latency
of 700 ns. BG/Q is water cooled and has achieved a power
efficiency of over 2 GFlop/s/Watt on a Linpack benchmark.

The Sequoia installation has one I/O node for every 128
compute nodes, theoretically supporting up to 4 Gbyte/s band-
width per I/O node to a file system.



IV. OPTIMIZATION STRATEGY

In designing an optimization strategy for this problem, a
number of significant challenges must be addressed. Chief
among these is the relatively small amount of available work
per core. Our discretization of a typical human heart with
a grid resolution of 0.1 mm has about 370 million grid
cells of heart tissue. On Sequoia this amounts to about 3800
cells per node, or about 250 per core. In this aggressive
strong scaling regime, merely tuning C/C++ code to the BG/Q
architecture is not enough. It is also necessary to modify the
computational model to eliminate high-cost operations and
expose concurrency while always maintaining fidelity to the
underlying biology. Only this combination of hardware-aware
and biology-aware tuning can achieve the best possible time-
to-solution.

A. Biology-aware tuning

In TT06e there are 32 computationally expensive functions
to be evaluated for each grid cell at each time step. These
functions share the common form

f(Vm) =

∑N
i=0Ai exp(BiVm)∑M
j=0 Cj exp(DjVm)

(3)

For example, µ and τ (see equation (2)) for the fGate are given
by

µ =
(
1 + exp

(
Vm+20

7

))−1
and

1

τ
=

1.0 + exp
(
25.0−Vm

10.0

)
+ 80.0/

(
1.0 + exp

(
Vm+30.0

10.0

))
562.0 exp

(
−(Vm+27.0)2

240.0

)
+ 31.0

The majority of the computational effort in updating the TT06e
state variables is associated with evaluation of these functions,
so it is essential to find efficient ways to compute them.

The form and parameters in equation (3) are obtained not
from any biological “first-principles”, but are rather chosen to
give reasonable limiting behavior and to fit experimental data
which are subject to measurement error. Suppose form (3) is
replaced with a lower-cost form such as a rational function
approximate

f(Vm) ≈ fa(Vm) =

∑m
i=0 aiV

i
m

1 +
∑`
j=1 bjV

j
m

Such a replacement is justifiable as long as the limiting
behavior is respected and the fit to data is equally good. We
can in fact replace all 32 functions with rational function
approximates with coefficients chosen to minimize the cost
of evaluation while maintaining a relative error of ε = 10−4,
where

ε =
maxVm∈I |fa(Vm)− f(Vm)|

maxVm∈I f(Vm)−minVm∈I f(Vm)
, I = [−100, 50] mV.

Approximates for each of the 1D functions are constructed
separately, so the various rational function approximates con-
tain polynomials of different order ranging from 1–18 in the
numerator and 1–11 in the denominator.

One additional modification to the TT06e formulation is
very useful. The rate of change of the potassium concentration
Ki depends not only on the membrane potential, Vm, and other
reaction state variables, S, but also on the rate of change of
Vm due to the external stimulus, Istim and diffusion, dV Dm /dt:

dKi

dt
= −C[Ip(Vm(t), S(t)) +

dV Dm (t)

dt
+ Istim(t)] (4)

This introduces a coupling between the diffusion and reaction
calculations. However by adding and subtracting the rate of
change of the voltage due to reaction, dV Rm /dt, equation (4)
can be rewritten as;

dKi

dt
= −C

(
Ip− dV Rm (t)

dt
+
dV Rm (t)

dt
+
dV Dm (t)

dt
+ Istim(t)

)
= −C

(
Ip− dV Rm

dt
+
dVm
dt

)
Rearranging terms and introducing the change of variable
V Km = Ki/C + Vm produces

dV Km
dt

= −
(
Ip− dV Rm

dt

)
= f(Vm(t), S(t))

and in terms of the new variable the coupling is removed.

B. Internode communication

With TT06e expressed in terms of rational function ap-
proximates, about 1600 floating point operations per grid cell
are required to evaluate equation (1). Assuming 50% of peak
performance and 3800 cells/node, this amounts to less than
70 µs of wall clock time. Because this is practically all of
the computation in a time step, communication and synchro-
nization operations must be optimized to be fast compared to
70 µs.

Internode communication is driven by the diffusion operator,
which requires a halo exchange of ghost cells to satisfy the
finite difference stencil. As we are well into the strong scaling
regime, the surface to volume ratio is high (about 40–50%)
and the message sizes are small. We implemented the halo
exchange using MPI Isend and Irecv and found unacceptably
high latencies of about 300 µs per time step. This forced us to
abandon MPI calls and reimplement the halo exchange using
the BG/Q low-level Systems Programming Interface (SPI).

Our optimized halo exchange is based on a remote-put
strategy and takes advantage of the fact that communica-
tion descriptors whose specification includes message size,
destination and routing can be constructed at initialization
and associated with a first-in, first-out queue (FIFO) that is
used for the remainder of the simulation. Communication is
initiated by copying data from its regular storage location to
the FIFO memory area and adjusting the tail pointer of the
FIFO. This triggers the message engine to copy data to the
network using the DMA instead of CPU resources. Message
delivery completion is checked by monitoring counters for
each message. On each node two receive buffers are used
in alternation to avoid a race condition that could overwrite
received data.



Fig. 2. Threading strategy. The diffusion and communication are shown on
the left, and the reaction term on the right.

Large scale benchmarks on up to 48k nodes demonstrate
that the SPI based halo exchange is completed in approxi-
mately 15 µs, a 20-fold improvement in communication time.
Moreover, the CPUs are completely free during practically all
of this time, allowing full opportunity to overlap computation.
Other less frequent communication, such as initialization tasks
and data aggregation for I/O, is performed with MPI.

C. Threading model

Initially we had planned to exploit the concurrency of
multiple cores per node as well as multiple threads per core by
decorating key loops with OpenMP pragmas. Unfortunately
this also proved to be a source of unacceptable latency. On
BG/Q the fork/join overhead for a single parallel for loop with
64 threads is nearly 15 µs. Hence, we are forced to abandon
the model of using OMP pragmas to manage threads within
our main time step loop. Instead, we begin a parallel section
before the time step loop and manage the threads explicitly.

Our overall threading strategy is shown in Figure 2. The
modifications to the potassium current described in Sec-
tion IV-A allow us to run reaction and diffusion concurrently.
Of the 16 cores on the node, we designate a small number
of cores (presently 2) to be responsible for diffusion and
the halo exchange. The remaining cores are responsible for
the reaction model, time-integration loop, and most data
copying/reformatting operations. The assignment of cores to
diffusion or reaction is configurable at run-time. Synchroniza-
tion between the diffusion and reaction threads and barriers
within groups of threads are handled using the fast L2 atomic
operations provided by the hardware, reducing associated
overhead to under 1 µs.

There are several advantages to assigning threads in this
manner. A principal consideration is that each core has its
own L1 cache that is shared among the hardware threads.
Assigning diffusion and reaction to separate cores simplifies
cache management and allows us to balance the difference
in computational intensity between diffusion and reaction by
adjusting the number of cores assigned to the respective
pieces. Additionally, SPI communication costs are covered by

computation on 14 of 16 cores. Finally, since L2 bandwidth
is on a per-core basis, copy operations are performed on the
group with the larger number of cores.

D. Reaction calculation

The low level optimization of the reaction calculation
is guided by the features of the BG/Q memory system
and compute cores. Because of limited memory band-
width (32 bytes/cycle/core from L1 and approximately
8 bytes/cycle/core from L2), data reuse is critical to prevent
starvation of the quad SIMD FPU, which requires 96 input
operand bytes/cycle for a quad fused multiply add (FMA).
Such unfavorable bandwidth to Flop/s ratios are a typical
feature of modern architectures. It is of course equally critical
to “SIMDize” the calculation to exploit the vectorization
potential of the SIMD instruction set. We chose the rational
function approximates introduced in section IV-A specifically
to address these two challenges. Polynomial coefficients can
be kept in registers for reuse over many evaluations, and
SIMDization is facilitated by the fact that the same polynomial
is evaluated for all grid cells. To avoid the complexities of
inline assembly, vector intrinsics (or “built-ins”) are used to
generate SIMD instructions.

There is no coupling between the 12 gate functions, so each
has its own separate data stream. Assigning 3 gate functions
to each of the 4 hardware threads on a core allows us to
store different polynomial coefficients in registers for each
thread. This is valuable since each of the four hardware threads
per core has its own register bank, corresponding to 4k/core
of storage in registers (compared to 16k in L1 cache). The
varying polynomial degrees in the rational function approx-
imates complicates the instruction balance within a single
thread and impacts load balance, but this is largely remedied
by loop skewing and the fact that only two of four threads are
required to fully utilize the dual-issue instruction capability;
the instruction units can remain heavily utilized even if one or
two threads finish early. We found that performance was highly
sensitive to loop unrolling and judicious use of unrolling
had to be enforced. Greater unrolling causes register spilling,
the cost of which is exacerbated by the write-through L1
cache. Register pressure is reduced by storing four different
coefficients per register (instead of four copies of the same
coefficient) and replicating (“splatting”) into operand registers
when needed. This technique can also favorably shift the
mix of floating point and integer instructions. Finally, we
had to bear in mind that our goal was more complicated
than obtaining the fastest single gate function, but the fastest
computation of all 12 gates. Thus, some routines had to be
restricted (e.g., in terms of register-to-register moves or loop
unrolling) so that other routines, sharing limited resources,
could run more effectively.

Optimization of the non-gate functions is more challenging
because of a much greater diversity in the mathematical forms
of the equations and because all 20 state variables are needed
in the evaluations. With no obviously beneficial way to assign
equations to hardware threads, work is instead partitioned



by dividing the grid cells on each core among the threads.
This has the unfortunate side effect of limiting the ability to
use the per-thread register banks to store the large number
of coefficients, as each thread evaluates the same functions.
Deep loop unrolling was of limited utility because extreme
register pressure when unrolling could result in a catastrophic
number of register spills. This was largely ameliorated through
an application of the aforementioned technique of splatting
coefficients from a table held in registers to operand registers.
When employing intrinsics, this work is more painstaking than
in the analogous case with assembly, as it is the register
coloring and scheduling of the compiler that dictates when
this method proves beneficial or pernicious. The third and
final hurdle we faced involved the calculation of the log
functions. We tailored the polynomial expressions needed to
compute our log functions for the known, physically-relevant
range of values that we might encounter and exploited SIMD
instructions to great advantage.

E. Diffusion calculation

Mathematically, the diffusion calculation is simple. It is only
a sum over the 19 stencil points of voltages multiplied by pre-
computed coefficients. Due to fiber orientation, these coeffi-
cients are different for each grid cell and cannot be reused. The
ratio of memory access to arithmetic is thus unfavorably high.
Nevertheless, performance does improve with SIMDization
obtained by loading the voltages of four adjacent (in memory)
grid cells into registers and performing the stencil arithmetic
for all four at once. Careful use of register swaps and shifts
reduces the number of load operations that are needed. Further
reduction in load bandwidth is achieved by representing the
diffusion coefficients in single precision. This is reasonable
because the fiber direction and conductivity tensor are not
known to high precision.

One drawback of our current algorithm is that the grid
cells assigned to a node must be represented in memory as
a rectangular block. This allows the use of fixed memory
offsets to locate stencil points, but requires a copy operation
at each time step since reaction performance is optimized
by a different memory layout. The fact that not all memory
locations in the block correspond to tissue cells creates an
additional inefficiency since some SIMD vectors will contain
non-tissue cells. This is especially true for nodes assigned
to regions near the heart boundary. We expect that improved
blocking strategies and optimized assignment of grid cells to
nodes will help reduce this problem.

F. Validation

The optimized code has been carefully validated to ensure
biological fidelity. Tests of a single cell paced (stimulated) at
various prescribed intervals agree very well with published
results [13]. We also compare to a TT06 benchmark suite
presented in Niederer, et al. [17] involving eleven different
electrophysiology codes that use a variety of numerical tech-
niques and computational grids. We find excellent agreement
between Cardioid and other finite difference codes. The fully

Fig. 3. Weak scaling of uniform block of heart tissue using optimized
Cardioid code on BG/Q. The time per iteration (in µs) is shown in black, and
the throughput (in PFlop/s) is shown in blue.

anisotropic conductivity tensor was tested using the Method of
Manufactured Solutions for a steady state solution of Eq. (1).
As expected, the finite volume discretization error is O(h2)
compared with the analytic solution for a grid spacing h.

V. PERFORMANCE AND SCALABILITY

A. Timers and floating point performance counters

We utilize the BG/Q low-overhead CPU time base register
to implement low cost in situ timers to monitor time spent in
different parts of the code. This register, which counts clock
cycles, can be accessed via the inline call GetTimeBase() in
only 1 cycle.

Each BG/Q core provides 24 counters that can monitor a
variety of core events including counting floating point oper-
ations. Converting counts to Flop/s requires multiplication by
appropriate weights: 1 for addition, subtraction, multiplication,
and other non-storage operations, 2 for fused multiply-add,
and 8 for division and square root. The corresponding SIMD
instructions have four times the weight, i.e., 8 for a quad FMA.
Using the IBM Hardware Performance Monitoring (HPM)
library, operation counts are summed across all the cores on all
nodes and divided by the elapsed time to get the throughput in
PFlop/s. Measured HPM throughout values have been verified
by directly counting operations using a small test system.

B. Performance and scaling

In order to estimate full machine performance for our target
0.1 mm human heart system, we carry out weak scaling tests
on a tissue block having 3584 grid cells per node. The results
are shown in Figure 3. We observe excellent weak scaling
from 16,384 cores all the way up to 786,432 cores, one half
of the full machine, with the time per iteration remaining
constant and the measured floating point performance increas-
ing linearly with the number of cores. This confirms that
communication costs do not grow with increasing problem
size, and that the code is capable of operating efficiently
at very large task counts. It is therefore not unreasonable
to extrapolate these curves another factor of two to the full



Fig. 4. Strong scaling of uniform block of heart tissue. The dashed line
represents perfect scaling.

machine and expect excellent parallel efficiency at full scale.
Note too that on the half-machine our throughput exceeds
4.3 PFlop/s, which is over 43% of peak. Combined with our
perfect weak scaling, we should exceed 8.6 PFlop/s on the full
Sequoia once it is available.

Figure 4 shows the strong scaling performance with a block
of approximately 88 million grid cells using up to 393,216
cores (one quarter of the full machine). The speedup from
16,384 cores to 393,216 was 19.0, which corresponds to a
parallel efficiency of 79%. As expected, there is some loss
of efficiency when going from nearly 100,000 grid cells per
node down to 3584: although the 3584 cell/node case is highly
optimized (as shown by the floating point performance), the
operating margins at such light workloads are so narrow that
normally inconsequential costs such as loop startup and sub-
program calls become significant. It should be noted that were
we merely interested in achieving high flop rates, it would have
been easy to simply construct systems with larger local data
sizes. For example, our 16384-core case runs at over 54% of
peak. However, our goal is ultimately to optimize the time to
solution of a real scientific application, thus necessitating the
far more difficult task of optimizing performance at the far
end of the strong scaling curve.

We next compare the optimized Cardioid with the unopti-
mized version (based on reaction code fom the CellML Model
repository and a simplistic implementation of the diffusion
operator). The optimized code exhibits much better weak
scaling than the unoptimized version (which uses MPI and
OpenMP). On average, the optimized code executes about 50
times faster than the unoptimized code.

In addition to the performance trials just described, we have
confirmed the stability of the code with an initial 20 heartbeat
run using a 180 million grid cell heart geometry on 16,384
BG/Q nodes. The additional geometric complexity of the heart
structure does lower performance. This is almost entirely due
to the inefficiencies in the diffusion implementation mentioned
in section IV-E that affect odd-shaped subdomains with a
large number of non-tissue grid cells. Improvements to the
diffusion and subdomain assignment algorithms are in progress

TABLE I
THROUGHPUT (HEARTBEATS PER WALL CLOCK MINUTE) OF CARDIAC

ELECTROPHYSIOLOGY MODELS TARGETED TO HPC SYSTEMS.

Author Resolution Grid cells Raw thrpt Norm. thrpt

Pope 0.2mm 32.5M 0.027 0.0024
Niederer 0.25mm 26M 0.025 0.018
Krause 0.0625mm 1560M 0.0015 0.0065
Mirin 0.1mm 370M 9.0 (est.) 9.0 (est.)

to remedy this issue. The heart geometry also differs from
the block trial in that it contains multiple cell types. Since
different cell types use different parameters in the reaction
model, this could have a performance impact; however this
potential problem is easily avoided by sorting the cells by
type during initialization.

With algorithmic improvements and additional refinements
to our optimization strategy, we expect to obtain performance
on heart geometries that is nearly-comparable to that of a hom-
geneous tissue block. We should therefore achieve our target
throughput of 8–10 heartbeats per minute on our 370 million
grid cell heart on the full system.

C. Time-to-solution

We compare the Cardioid time to solution with those of
other leading cardiac electrophysiological models. We were
able to identify three such efforts, all having published or
presented in 2011, namely [10], [4] and [11]. All three
invoke the monodomain approximation and utilize a reaction-
diffusion model based on either [13] or [18]. All utilize an
explicit time integrator for the reaction phase, and two of the
three offer an implicit option for the diffusion phase. The
quoted performance figures pertain to different sized hearts
and are largely exclusive of I/O. Results are shown in Table I.

The raw throughput is defined as the number of simulated
heartbeats per wall minute. In order to compare codes, we
linearly scale raw throughput to 370M, the number of tissue
grid cells for the study herein, to get normalized throughput,
which appears in the rightmost column of the table. We believe
that the published time steps should apply at the normalized
resolution, so we do not apply a timestep scaling. We see that
the closest competitor to Cardioid is that of Niederer, whose
time-to-solution is 500 times longer, and that the Krause effort
is 3 times slower still.

VI. SCIENTIFIC CAPABLITY AND RESULTS

A. Anatomical reconstruction

We reconstruct anatomical models of the human ventricles
from cryosectional images (see Figure 5) from the Visible
Human Project R© [7] of The National Library of Medicine.
The female dataset is used since the cryosectional images
have higher spatial resolution (0.33x0.33x0.33 mm) than those
of the corresponding male dataset. A full description of this
procedure is beyond the scope of this article. Briefly, the 2D
images are segmented at organ boundaries and stacked to form
a 3D structure from which is defined a 3D finite element mesh.
We apply an additional transformation to define the Cartesian



Fig. 5. Anatomical reconstruction of the 3D heart mesh from 2D images of
the Visible Human Project.

rectangular grid that is used in the code. To compute the
conductivity for the diffusion calculation, we develop novel
methods to define fibers, even within the smallest structures
that were not resolvable with previous methods. For example,
the complex surface geometry on the endocardium (inner layer
of the ventricles; see Figure 1) was not accounted for in
previous models of human hearts. Our resulting grids contain
370M (0.1 mm), 180M (0.13 mm), 89M (0.16 mm), and 44M
grid cells (0.2 mm).

B. Impact of extension of reaction model

We examine the impact of our reaction model extensions
on the various cell types — epi, endo and M. The three cell
types have similar action potential duration (APD), the width
of the spike in cell membrane potential after triggering, but
the epi cell has a more pronounced notch after the initial
upstroke (see Figure 6, left). Based on studies of human
M cell ventricular wedges [19], [20], the APD is greatly
prolonged with longer basic cycle length (BCL), the time
between trigger events. The TT06 model, however, shows little
dependence of APD on cycle length, a deficiency noted in
the original papers and attributed to lack of a late sodium
current in these models. With our addition of such a current,
which is preferentially larger in M cells as characterized by
experimental studies [21], [22], we are able to demonstrate a
more realistic dependence of APD on basic cycle length (see
Figure 6, right).

C. Wedge simulations

Torsade de Pointe (TdP) is an important class of arrhythmias
that manifest as rapid undulations in the ECG with an envelope
function that varies more slowly over time. The proposed
conceptual models for the formation of TdP [2], [23] involve
two key components: heterogeneity of APD at different tissue
locations and a triggering event that initiates the reentrant
activation. The heterogeneity of APD is thought to arise
from the M cell population that shows preferential APD
prolongation in response to slower heart rates and also to Class
III anti-arrhythmic drugs like d-sotalol. The trigger events are
generally assumed to result from extra excitation events such
as early-afterdepolarizations (EAD’s), in which a cardiac cell
that is repolarizing abruptly depolarizes with a secondary and
smaller upstroke.

Fig. 6. Electrophysiological response in epi, M and endo cells. (Left): AP’s
are shown for different cell types, labeled according to color. The responses
are shown for 600 ms BCL (solid) and 4000 ms BCL (dashed). Note the epi
and endo traces mostly overlap except for the notch after the rapid upstroke.
(Right): The action potential duration at 90% polarization (APD90) is shown
as a function of pacing rate for epi and M cells for the default (dashed) and
modified (solid) TT06 models. The data for endo (not shown) are very similar
to that for epi.

We perform wedge simulations that mirror experimental
studies that show that slow pacing rates and d-sotalol work
synergistically to promote TdP [24]. To investigate Tdp for-
mation, we simulate a wedge of 32x35x32 mm, roughly the
size of experimental preparations, that contains approximately
3M grid cells that are extracted from the whole heart. M cells,
generally thought to be located in the mid-myocardium, are
more recently described as existing in island-like subdomains
in the ventricular wall, though reports vary for different species
and regions of the heart [6]. We choose to place the M
cells in islands occupying roughly 30% of the volume of
the wall [19] and located more toward the endocardium as
described recently in human wedges [20]. We use a slow
pacing rate of 2000 ms BCL that prolongs the APD of M
cells to a greater extent than with other cell types (Figure 6).
The mode of action of d-sotalol is to block a particular class
of channels that promote repolarization, with a net effect to
increase the APD. We set the corresponding current to 0 to
simulate the blockage of these channels.

Representative simulation results are shown in Figure 7,
in which the wedge is stimulated on the endocardial surface
(left side) at 0 ms by the first stimulus (termed S1). The
activation wavefront propagates in the normal direction from
the endocardium to the epicardium, reaching roughly halfway
by 50 ms. After the activation front passes, the cells begin
to repolarize toward rest, but the M cell population remains
depolarized longer, as seen by the islands on the lower left
side of the wedge at 560 ms. A second stimulus (termed
S2) is triggered on the upper quadrant of the endocardial
surface to simulate an extra stimulus from the Purkinje fiber
network [25], [26]. The second wavefront begins to propagate
in a clockwise direction around the functional block created
by M cells that have yet to repolarize and therefore cannot be
excited again. In the case with the drug (left), the reentrant
pattern continues for the complete duration of the 2000 ms
simulation. In comparison, without the drug the smaller ef-
fective block by the island does not support sustained reentry,
and the activation of the tissue ceases by 690 ms, enabling the



Fig. 7. Activation pattern in a wedge model. The color shows the membrane
potential as indicated by the scale bar. On the left, labels show the time
from the initial stimulus (S1) applied at the location of the red block in the
uppermost panel at 0 ms. A second stimulus (S2) is applied at 560 ms at the
location shown by the smaller red block. The left column shows a simulated
drug response where reentrant activation occurs, illustrated symbolically by
the rotating figure. The right column shows a control case with no drug, and
reentrant activation does not occur.

tissue to fully repolarize.

D. Whole ventricle and ECG results

Figure 8 shows results for the two ventricle model with
an activation (depolarization) and relaxation (repolarization)
sequence that would occur in a typical heartbeat. Here the grid
has 0.16 mm resolution and consists of 90M grid cells rep-
resenting heart tissue. Electrical stimuli are applied at points
near the endocardial surface to simulate actual activation of

Fig. 8. Activation and relaxation pattern in the full two ventricle model
with the drug application. A top-down view is shown in the left column,
and a front view is shown in the right column (the right ventricle appears
on the left side). The color indicates the cellular potential as shown by the
scale bar. The front of electrical activation starts at the endocardium (20 ms)
and propagates towards the epicardium (100 ms). During repolarization of
the ventricles (370 ms), spherically shaped M-cell islands are clearly seen
because M cells repolarize later than the surrounding tissue.

the cardiac ventricles by Purkinje fibers. The locations of the
pacing sites are chosen to match the early activation sites
mapped in seminal work of [27]. At 20 ms, the activation
wave front is still localized to the region near the initial stimuli.
At 100 ms, the activation wave front reaches the outer edge
of the epicardial surface throughout most of the ventricles,
while only the base (top of heart) and the apex (bottom of
heart) remain in a relaxed state, as indicated by the small blue
regions. The activation eventually spreads to the whole heart,
and then repolarization occurs as the heart cells transition back
to the resting potential. The first areas that relax and revert
back to blue are seen in the apex of the heart toward the
endocardial surface at 370 ms. In the side view at 370 ms,
one can also see repolarization wavefronts where the central
region has mostly relaxed and the wave of repolarization is
spreading toward the base and apex. However, there are also
clearly demarcated M-cell islands that arise because the M
cells repolarize later than the surrounding tissue. These remain
after the main wave of repolarization has passed.

One goal of the simulations is to produce results that can
be compared to existing experimental data. To illustrate this



Fig. 9. Electrical potential of the torso and the simulated ECG. The body
surface potentials at 70 ms are mapped as colors shown on the scale bar. The
simulated ECG, shown by the white trace, is recorded at the V2 precordial
electrodes of a standard 12-lead configuration.

capability, we generate an ECG in which the changes in
the membrane potentials in the two ventricle model result in
changes of the electrical potentials on the body surface. The
body surface potentials are computed by solving the static
diffusion equations over the finite element model with the
geometry of the real torso. These potentials are mapped as
colors on the surface of the reconstructed torso in Figure 9. In
a clinical setting, the body surface potentials are recorded at
discrete electrode positions to produce time traces. We show
an example ECG time trace recorded from the precordial lead
V2 of a 12-lead ECG. The computed ECG time trace is similar
to that of clinical recordings for a normal heartbeat.

One key question to address is whether the reentrant ar-
rhythmias demonstrated in wedges can be also demonstrated in
the two ventricle model. The follow-on question is whether the
resulting ECG will have the characteristic undulating pattern
that is observed for TdP in the clinical setting. Because the
model executes quickly, we can explore parameter space with
long runtimes — capabilities well beyond those of previous
models.

VII. CONCLUSIONS

We have developed a highly efficient and scalable sim-
ulation capability for human ventricular electrophysiology
with groundbreaking detail and resolution to provide new
insights into arrhythmia initiation and maintenance. The code
solves a reaction-diffusion equation for the cell membrane
potential using a standard ionic model of the human cell with
novel modifications to better represent heterogeneous electri-
cal properties of different cell types. We use an anatomical
representation of the ventricles that, at 0.1 mm resolution, is
best in its class for organ-level studies of arrhythmogenesis.

The code is optimized for the Sequoia BG/Q machine at
Lawrence Livermore National Laboratory. The optimization
approach combines biology-aware and hardware-aware tuning
and utilizes both distributed and shared memory parallelism.
The 64 hardware threads on a node are allocated to the
reaction, diffusion and communication phases to maximize
utilization of the hardware. We have demonstrated near-perfect

weak scaling for a block of tissue cells using a range of pro-
cessors representing 1/96 to 1/2 of the full machine, as well as
excellent strong scaling. The optimized code is a factor of 50
faster than the unoptimized starting point. Despite operating in
an aggressive strong scaling regime with limited computational
work per core, our scaling studies predict performance of
8.6 PFlop/s (43% of peak), and absolute throughput of roughly
9 heartbeats per minute (less than 65 µs per time step), for a
0.1 mm resolution 370 million cell grid on the full Sequoia.
The corresponding time-to-solution is 400–500 times faster
than the state-of-the-art.

The results of the scientific studies illustrate the power
of the modeling approach. Consistent with experiments, the
model shows that long action potentials of the M cell islands,
accentuated by slow heart rates and d-sotalol, produce regions
of conduction block that facilitate the formation of reentrant
activation patterns. The model and its efficient implementation
greatly advance the state-of-the-art and already provide an
unparalleled method for interpreting and predicting electro-
physiological responses that span from wedges to ventricles
and to near-cellular scale. For example, we plan to simulate ex-
perimental drug protocols using real patient data that show the
spontaneous formation and termination of arrhythmias in ECG
records collected over many hours. Moreover, our method
has the potential to make practical new cardiac modeling
applications such as drug safety testing, medical device design,
and therapeutic planning for personalized medicine. Once
Sequoia installation is complete, we will have the opportunity
to carry out our planned multi-hour drug simulations, which
we aim to present at SC12.

ACKNOWLEDGEMENTS

We thank Michel McCoy and the NNSA Advanced Scien-
tific Computing program, as well as the Institute for Scientifc
Computing Research for their support of this effort. We also
thank Frederick Streitz, James Sexton and Ajay Royyuru
for their expert guidance. We additionally thank Alexandre
Eichenberger, Blake Fitch, Fabrizio Petrini, Mike Pitman,
Simon Wail and Bob Walkup of IBM Research for their
contributions to the cardiac code and its optimization and Ruud
Haring, Martin Ohmacht, and Rob Shearer for information on
the BG/Q architecture. We further thank Kim Cupps, David
Fox, Adam Bertsch, and the Livermore Computing team for
working closely with us to assure the readiness of the hardware
and software and their advice on its use.

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Lab-
oratory under Contract DE-AC52-07NA27344. This is LLNL
report LLNL-CONF-553873.

REFERENCES

[1] N. A. Estes, 3rd, “Predicting and preventing sudden cardiac death,”
Circulation, vol. 124, no. 5, pp. 651–656, 2011.

[2] D. P. Zipes and H. J. Wellens, “Sudden cardiac death,” Circulation,
vol. 98, no. 21, pp. 2334–2351, 1998.

[3] J. D. Moreno and Z. I. Zhu, et al., “A computational model to predict
the effects of class I anti-arrhythmic drugs on ventricular rhythms,” Sci.
Transl. Med., vol. 3, no. 98, p. 98ra83, 2011.



[4] S. Niederer, L. Mitchell, N. Smith, and G. Plank, “Simulating human
cardiac electrophysiology on clinical time-scales,” Frontiers in Physiol-
ogy, vol. 2, no. 14, pp. 1–7, 2011.

[5] M. Reumann, B. G. Fitch, A. Rayshubskiy, M. C. Pitman, and J. J.
Rice, “Orthogonal recursive bisection as data decomposition strategy
for massively parallel cardiac simulations,” Biomed Tech, vol. 56, no. 3,
pp. 129–145, 2011.

[6] D. U. Keller and D. L. Weiss, et al., “Influence of I(Ks) heterogeneities
on the genesis of the T-wave: a computational evaluation,” IEEE Trans.
Biomed. Eng., vol. 59, no. 2, pp. 311–322, 2012.

[7] U.S. National Library of Medicine Visible Human Project.
http://www.nlm.nih.gov/research/visible/visible human.html.

[8] M. K. Das and D. P. Zipes, “Antiarrhythmic and nonantiarrhythmic drugs
for sudden cardiac death prevention,” J. Cardiovasc. Pharmacol., vol. 55,
no. 5, pp. 438–449, 2010.

[9] N. Sarapa and J. Morganroth, et al., “Electrocardiographic identification
of drug-induced QT prolongation: assessment by different recording and
measurement methods,” Ann. Noninvasive Electrocardiol., vol. 9, no. 1,
pp. 48–57, 2004.

[10] B. J. Pope, B. G. Fitch, M. C. Pitman, J. J. Rice, and M. Reumann,
“Performance of hybrid programming models for multiscale cardiac
simulations: Preparing for petascale computation,” IEEE Trans. Biomed.
Eng., vol. 58, pp. 2965–2969, 2011.

[11] D. Krause, M. Potse, T. Dickopf, R. Krause, A. Auricchio, and
F. Prinzen, “Hybrid parallelization of a realistic heart model,” in Pro-
ceedings of Supercomputing 2011. Los Alamitos, CA: IEEE Computer
Society Press, 2011.

[12] M. Potse, B. Dube, J. Richer, A. Vinet, and R. Gulrajani, “A comparison
of monodomain and bidomain reaction-diffusion models for action
potential propagation in the human heart,” IEEE Trans. Biomedical
Engineering, vol. 53, no. 12, pp. 2425–2435, 2006.

[13] K. H. W. J. ten Tusscher and A. V. Panfilov, “Alternans and spiral
breakup in a human ventricular tissue model,” American Journal of
Physiology - Heart and Circulatory Physiology, vol. 291, pp. 1088–
1100, 2006.

[14] S. Rush and H. Larsen, “A practical algorithm for solving dynamic
membrane equations,” IEEE Trans. Biomed. Eng., vol. 25, pp. 389–392,
1978.

[15] R. Koradi, M. Billeter, and P. Guntert, “Point-centered domain decom-
position for parallel molecular dynamics simulation,” Comput. Phys.
Commun., vol. 124, pp. 139–147, 2000.

[16] R. A. Haring, M. Ohmacht, T. W. Fox, M. K. Gschwind, D. L. Satter-
field, K. Sugavanam, P. W. Coteus, P. Heidelberger, M. A. Blumrich,
R. W. Wisniewski, A. Gara, G. L.-T. Chiu, P. A. Boyle, N. H. Christ,
and C. Kim, “The ibm blue gene/q compute chip,” IEEE Micro, vol. 32,
no. 2, pp. 48–60, 2012.

[17] S. Niederer, E. Kerfoot, A. P. Benson, M. O. Bernabeu, O. Bernus,
C. Bradley, E. M. Cherry, R. Clayton, F. H. Fenton, A. Garny, E. Heiden-
reich, S. Land, M. Maleckar, P. Pathmanathon, G. Plank, J. F. Rodriguez,
I. Roy, F. B. Sachse, G. Seemann, O. Skavhaug, and N. P. Smith,
“Verification of cardiac tissue electrophysiology simulators using an n-
version benchmark,” Phil. Trans. R. Soc. A, vol. 369, pp. 4331–4351,
2011.

[18] K. H. W. J. ten Tusscher, D. Noble, P. J. Noble, and A. V. Panfilov, “A
model for human ventricular tissue,” American Journal of Physiology -
Heart and Circulatory Physiology, vol. 286, pp. 1573–1589, 2004.

[19] E. Drouin and F. Charpentier, et al., “Electrophysiologic characteristics
of cells spanning the left ventricular wall of human heart: evidence for
presence of m cells,” J. Am. Coll. Cardiol., vol. 26, no. 1, pp. 185–192,
1995.

[20] A. V. Glukhov, V. V. Fedorov, Q. Lou, V. K. Ravikuman, P. W. Kalish,
R. B. Schuessler, N. Moazami, and I. R. Efimov, “Transmural dispersion
of repolarization in failing and nonfailing human ventricle,” Journal of
the American Heart Association, vol. 106, pp. 981–991, 2010.

[21] C.Antzelevitch and W. Shimizu, et al., “The m cell: its contribution to
the ecg and to normal and abnormal electrical function of the heart,” J.
Cardiovasc. Electrophysiol., vol. 10, no. 8, pp. 1124–1152, 1999.

[22] A. C. Zygmunt and G. T. Eddlestone, et al., “Larger late sodium
conductance in m cells contributes to electrical heterogeneity in canine
ventricle,” Am. J. Physiol. Heart Circ. Physiol., vol. 281, no. 2, pp.
H689–697, 2001.

[23] C. Antzelevitch and A. Burashnikov, “Overview of basic mechanisms of
cardiac arrhythmia,” Card. Electrophisiol. Clin., vol. 3, no. 1, pp. 23–45,
2011.

[24] F. G. Akar and G. X. Yan, et al., “Unique topographical distribution
of m cells underlies reentrant mechanism of torsade de pointes in the
long-qt syndrome,” Circulation, vol. 105, no. 10, pp. 1247–1253, 2002.

[25] M. Monserrat and J. Saiz, et al., “Ectopic activity in ventricular cells
induced by early afterdepolarizations developed in purkinje cells,” Ann.
Biomed. Eng., vol. 28, no. 11, pp. 1343–1351, 2000.

[26] M. Deo and P. M. Boyle, et al., “Arrhythmogenesis by single ectopic
beats originating in the purkinje system,” Am. J. Physiol. Heart Circ.
Physiol., vol. 299, no. 4, pp. H1002–1011, 2010.

[27] D. Durrer and R. T. van Dam, et al., “Total excitation of the isolated
human heart,” Circulation, vol. 41, no. 6, pp. 899–912, 1970.


